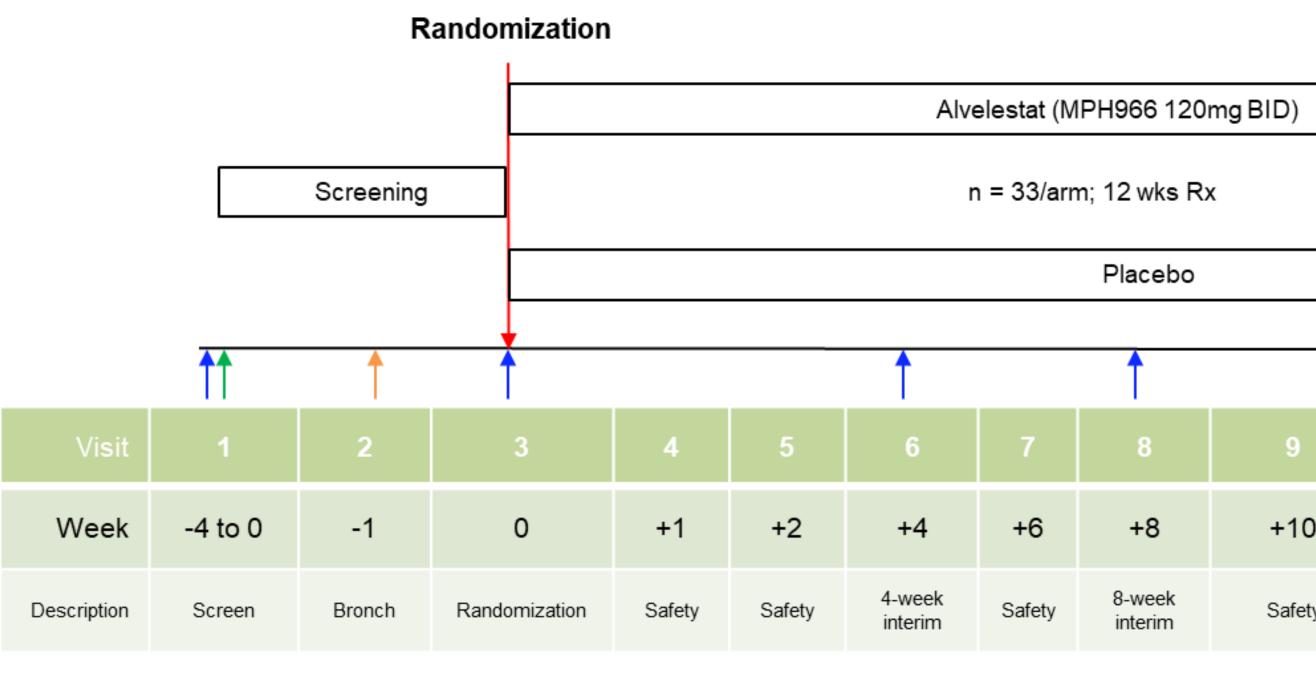


Alvelestat (MPH966) for the Treatment of ALpha-1 ANTitrypsin Deficiency (ATALANTa): A Phase 2, multicenter, double-blind, randomized, placebocontrolled study to evaluate efficacy, safety, and tolerability of alvelestat in alpha-1 antitrypsin deficiency

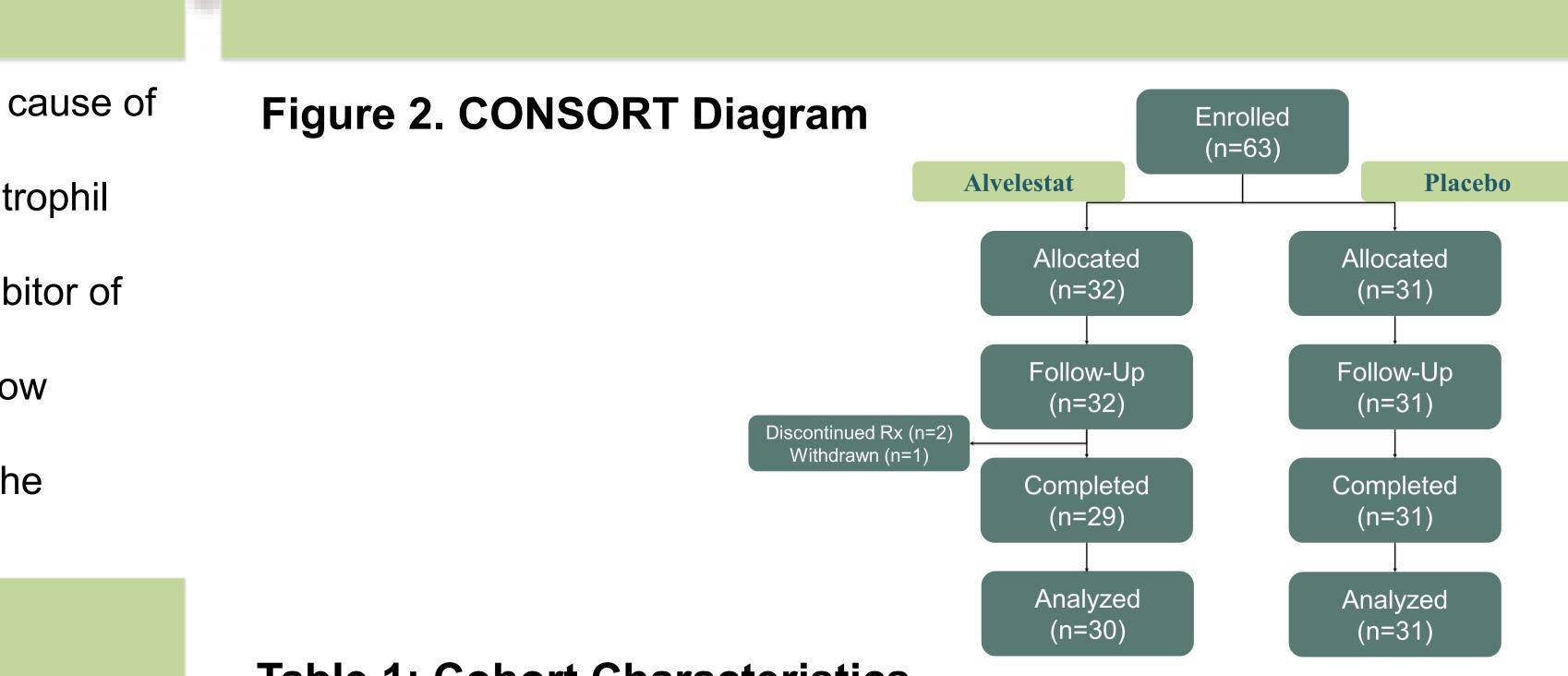
J. Michael Wells MD, MSPH^{1,2,3}; Umur Hatipoglu MD, MBA⁴; Monica P. Goldklang MD⁵; Cheryl B. Pirozzi MD, MS⁶; M. Bradley Drummond MD, MHS⁷; Igor Barjaktarevic MD, PhD⁸; Wissam Chatila MD, PhD⁹; Megan Devine MD¹⁰; Charlie B. Strange MD¹¹; Robert A. Stockley MD¹⁴; Elizabeth Westfall MPH^{1,2}; Vivian Y Lin PhD^{1,2}; Robin Parks MS¹⁵; Hui-Chien Kuo MPH¹⁵; Inmaculada Aban PhD¹⁵; Mark T. Dransfield MD^{1,2,3}

1. Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL; 2. UAB Lung Health Center; 3. Birmingham VA Healthcare System, Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH; 5. Department of Anesthesiology, Columbia University, New York, NY; 6. Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT; 7. Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California at Los Angeles (UCLA), Los Angeles, Cleveland, OH; 5. Department of Pulmonary, Critical Care & Sleep Medicine, University of California at Los Angeles (UCLA), Los Angeles, Cleveland, OH; 5. Department of Pulmonary, Critical Care & Sleep Medicine, University of California at Los Angeles (UCLA), Los Angeles, Cleveland, OH; 5. Department of Pulmonary, Critical Care & Sleep Medicine, University of California at Los Angeles (UCLA), Los Angeles, Cleveland, Cleveland, Cleveland, Cleveland, OH; 5. Department of Pulmonary, Critical Care & Sleep Medicine, University of California at Los Angeles (UCLA), Los Angeles, Cleveland, Clevel CA; 9. Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; UT Health East Texas Pulmonary Institute, UT Health Tyler, Tyler, TX; 11. Department of Medicine, Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina (MUSC), Charleston, SC; 12. Department of Medicine, Division of Pulmonary and Critical Care Medicine, Division of Pulmonary and Critical Care Medicine, Temple University of South Carolina (MUSC), Charleston, SC; 12. Department of Medicine, Division of Pulmonary and Critical Care Medicine, Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina (MUSC), Charleston, SC; 12. Department of Medicine, Division of Pulmonary and Critical Care Medicine, Division of Pulmonary Pulmonary, Critical Care, and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham, UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 13. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 14. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 14. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 14. Mereo BioPharma PLC, London, UK; 14. University of Alabama at Birmingham (UAB) and Sleep Medicine; National Jewish Health, Denver, CO; 14. Mereo BioPharma PLC, London, UK; 14. Mereo BioPharma PLC, London, UK;

Results


Rationale

- Alpha-1 antitrypsin deficiency (AATD) is the most common genetic cause of chronic obstructive pulmonary disease (COPD).
- AATD is characterized by low AAT levels; leading to excessive neutrophil elastase (NE) mediated lung destruction.
- Alvelestat (MPH966) is a potent, selective, and reversible, oral inhibitor of human NE.
- Suppression of NE is expected to reduce lung damage and may slow disease progression in AATD.
- This study is to establish proof of clinical concept by investigating the mechanistic effect and safety of alvelestat in AATD.


Methods

- Trial Design: Phase 2, multicenter, double-blind, randomized, placebocontrolled trial
- Patient Population: Pi*ZZ, Pi*SZ, or Pi*Null AATD
- Intervention: Alvelestat 120mg po bid or placebo
- Duration: 12-week
- The primary objectives:
 - safety and tolerability
 - blood markers of NE activity.
- Secondary endpoints (blood pharmacodynamics):
 - A-alpha-Val360
 - desmosine/isodesmosine
 - markers of lung tissue degradation and inflammation
- Exploratory endpoints:
 - lung function
 - respiratory symptoms
 - pharmacokinetics.
- Mixed-models for repeated measures were used for analyses

Figure 1. Study Schema

Red arrow = Randomization Blue arrow = Blood (biomarker) collection Green arrow = Sputum collection (optional) Orange arrow = BAL collection (optional)

Table 1: Cohort Characteristics

	Alvelestat (n=30)	Placebo (n=31)	Total (n=61)
Age, years	52.4±14	54.6±11.9	53.5±12.9
Female Sex, n (%)	22 (73%)	22 (71%)	44 (72%)
White Race, n (%)	30 (100%)	31 (100%)	61 (100%)
Hispanic or Latino Ethnicity, n (%)	0 (0%)	1 (3%)	1 (1.6%)
Alpha-1 Antitrypsin Genotype, n (%) Pi*ZZ PI*SZ PI*Null	22 (73%) 6 (20%) 2 (7%)	24 (77%) 4 (13%) 3 (10%)	46 (75%) 10 (16%) 5 (8%)
Augmentation Therapy, n (%)	13 (43%)	15 (48%)	28 (46%)
COPD, n (%)	15 (50%)	20 (64%)	35 (57%)
ECOPD within prior year, n (%)	5 (17%)	9 (29%)	14 (23%)
AAT level, mg/dL	50±33	61±53	55±44

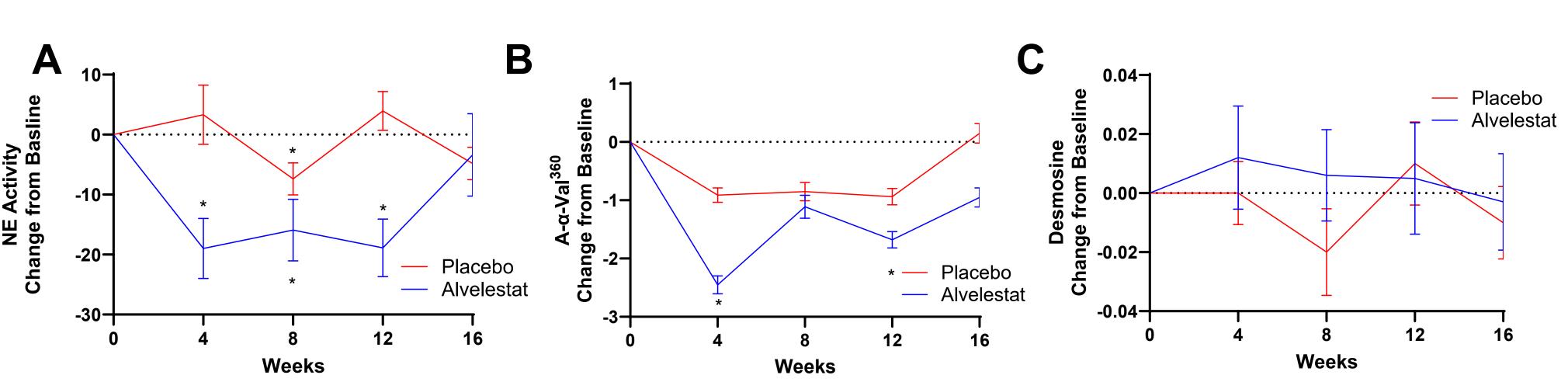


Image: Study End Image: Study End Image: Study End Image: Study End)		Follow	/-up
10 +11 +12 +16		1		
Fety Bronch Study End Post-IP		10	11	12
ATV BRODOD STUDY EDD	0	+11	+12	+16
	ety	Bronch	Study End	

	Alvelestat (n=32) #events (#subjects)	Placebo (n=31) #events (#subjects)
AE	70 (25)	65 (23)
Deaths	0	0
SAE*	0	0
TEAE	70 (25)	64 (23)
AESI	6 (5)	12 (11)**
Related TEAE	24 (15)	23 (10)
Serious Related TEAE	0	0
Withdrawal due to AEs	2 (2) – headache	0

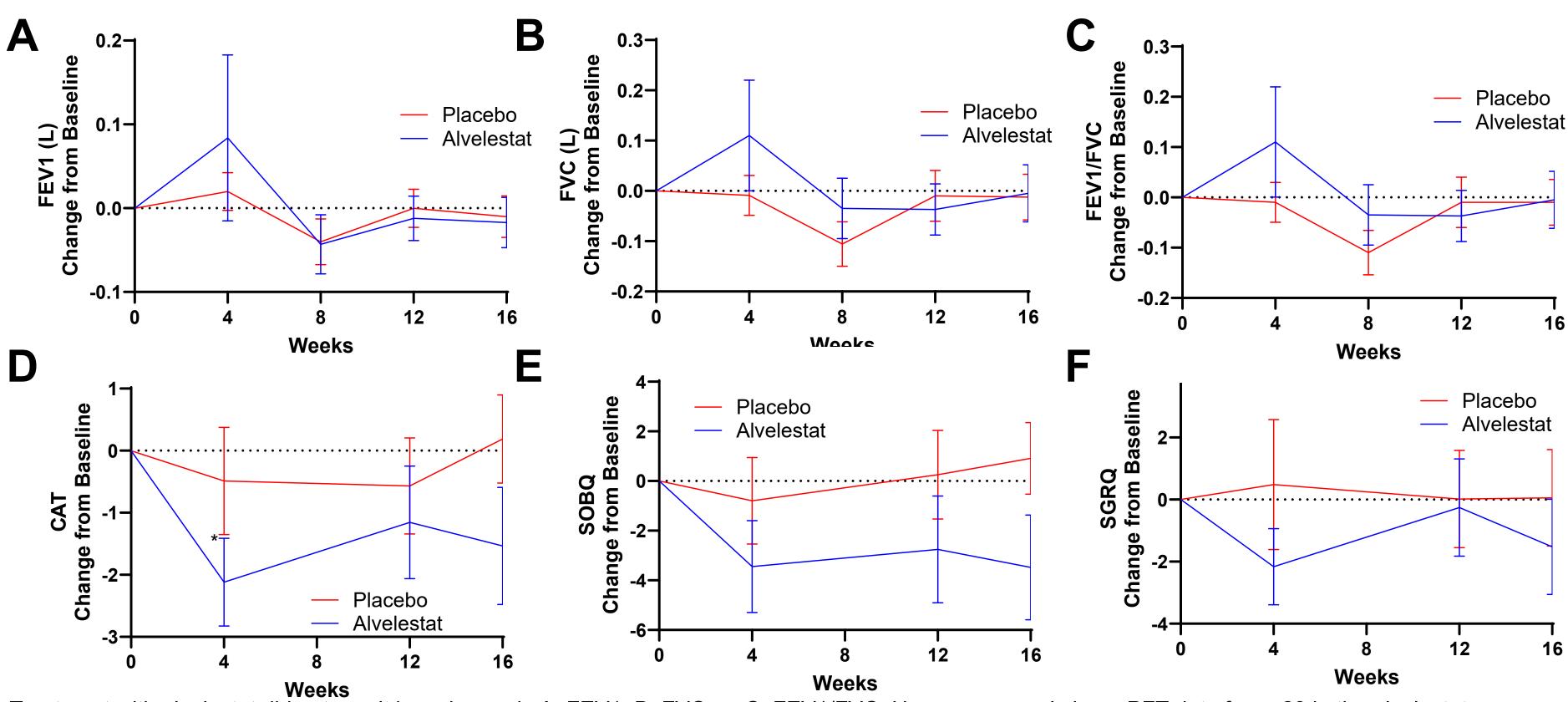

*There were no serious adverse events, liver function abnormalities, ECG abnormalities, or neutropenia. **Infections requiring antibiotics and COPD exacerbations were more common in the placebo group.

Figure 3. Alvelestat Effects on NE Activity, A-alpha-Val360, and Desmosine

A. Treatment with alvelestat resulted in a significant reduction from baseline NE activity (-18.9±4.8ng/ml; -58.3%; p=0.0005) that also differed from placebo treatment (-15.0 \pm 5.2ng/ml; p=0.0059) at 12-weeks; B. There was a significant reduction from baseline A- α -Val³⁶⁰ in the alvelestat arm (-1.7 \pm 0.7nM; -13.4%; p=0.03) but not in the placebo arm (p=0.23); C. There were no within-subject or between-group changes in desmosine. There were no significant changes in other markers of inflammation (data not shown).

Figure 4. Alvelestat Effects on Lung Function and Respiratory Symptoms

Treatment with alvelestat did not result in a change in A. FEV1; B. FVC; or C. FEV1/FVC. However, we only have PFT data for n=23 in the alvelestat group and n=29 in the placebo group due to issues with aerosol generating procedures during the pandemic. Similarly, we did not observe sustained changes in D. COPD Assessment Test (CAT) score; E. San Diego Breathlessness Questionnaire (SOBQ) score; or F. St George's Respiratory Questionnaire (SGRQ) Score.

Support for this project was provided by: NIH:NIH/NCATS UH3TR002450 and Mereo BioPharma ClinicalTrials.gov ID: NCT03679598

Conclusions

• The oral NE inhibitor alvelestat was safe, well-tolerated, and led to a significant and sustained reduction in NE activity and the NE-specific fibrinogen cleavage product A-alpha-Val360 at 120mg twice daily in AATD. • These findings support further testing of alvelestat in severe AATD in Phase 3 clinical trials

Acknowledgements

ALABAMA AT BIRMINGHAM